
Crowning the Metropolis: Skylines, Land Values, and
Urban Population

David Albouy∗

University of Illinois and NBER

Mauricio Arango

University of Illinois

Minchul Shin

Federal Reserve Bank of Philadelphia

August 10, 2020

PRELIMINARY - Do not cite

∗We thank Gabriel Ahlfeldt, Xavier Gabaix Laurent Gobillon, Steven Malpezzi, and Dan McMillen for
inspiration and assistance. Please e-mail any questions or comments to albouy@illinois.edu.



Abstract

In the U.S., the height of cities’ tallest buildings is strongly correlated with their greater metropolitan
area’s population. This is explained through land prices, which rise proportionally with population
and income in a monocentric city model, while decreasing proportionally with the arc at which
a city can expand. These prices in turn raise building heights less than proportionally through
a production function for skyscrapers, mitigated by construction costs and land-use regulations.
Using a system of recursive simultaneous equations, we endogenize income with agglomeration
economies and test these economic relationships, providing a novel and intrinsically interesting
instrumental variables framework for skyscraper heights.



1 Introduction

A curious (and novel) fact about U.S. cities is that the height of their tallest buildings predicts the
population of their entire metropolitan area quite accurately. The correlation coefficient between
population and the average height of the tallest ten buildings – both expressed in logarithms – is
0.93. The regression line, seen in Figure 1, finds that a 10 percent higher population predicts almost
4 percent taller buildings across most of the sample. This reflects that average skyscraper heights
vary in range by a factor of 10 — from one hundred to one thousand feet — while metro populations
vary by a factor 400 — from 50 thousand to 20 million. Conversely, by observing the height of a
city’s skyline, one can predict roughly how many people are within commuting distance.

Figure 1: Skyscraper Heights and Metropolitan Population

Metropolitan areas refers to 2010 consolidated metropolitan statistical areas (CMSAs). Heights from skyscraper-
page.com are for 2010. Standard errors in parentheses. Regression weighted by inverse population rank. The size of
the marker is proportional to the metro population times the arc of expansion a city can develop away from its center,
as justified in the text. Markers with an “X” have a Wharton regulatory index for their central city above the national
average: the greater the proportion filled in, the higher the index.

Of course no policy or law – neither legal, nor natural – ordains a close connection between
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metro population and building heights. Instead, this paper proposes the two quantities are connected
by prices, namely land values. More populous cities have greater central land values, as predicted
by the canonical Alonso (1964), Mills (1967), Muth (1969), monocentric city model. Those greater
land values cause builders to build higher, i.e. use more capital, to provide floor space to customers.
Tall city skylines are indeed the physical result of the economic forces laid out in urban economics’
best known theory. While many have no doubt intuited this, it has yet to be shown formally before.

The central land value estimates provided by Albouy et al. (2018) are the first to allow researchers
to tie this urban economic relationship together.1. Plotted against metropolitan population in figure
2, we see central land values vary by a factor of roughly a thousand — from as low as one hundred
thousand an acre, to a hundred million. While these value numbers are somewhat noisy, the
correlation coefficient is still quite high at 0.91, with a regression slightly greater than one.

Figure 2: Central Land Values and Metropolitan Population

Central land values reported in Albouy et al. (2018) refers to an area of 1 mile radius around city hall. In large CMSAs
with multiple centers, the maximum is shown. Standard errors in parentheses. All regressions are weighted by the
inverse of the population rank. Metropolitan population and size of marker explained in figure 1

1Previous estimates have focused on residential land, which is typically much more peripheral.
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The fact that metro population and central land values track each so closely is consistent with
the canonical monocentric city model of Alonso (1964), Mills (1967) and Muth (1969). Central
land values are higher in larger cites as they provide residents a greater savings from commuting all
the way to the city’s edge, where land is almost uniformly cheap. In fact, we argue below that a
coefficient just above one is consistent with a version of the model outlined in an unpublished early
version of Combes et al. (2016), also taking into account enodogenous urban agglomeration.2

This monocentric model implies that land values should fall proportionally with a city’s arc
of expansion from its center: fixing population, a city centered on a straight coast (like Chicago),
should have double the land values of a city on an open plain. This echoes some of the more recent
work on city shape such as Harari (2020). Using a less known measure of this arc by Malpezzi
(????), the rather tight prediction finds support in the data.3

The relationship between metro population and land values provides an economic motivation
for an instrumental variable estimation strategy, illustrated in Figure 3. This shows how skyscraper
height is related to land values. If metro population alone does not influence building heights, except
through greater land values, then it may serve as an instrumental variable (IV) for them.

Since we expect land values to be measured with greater error than population, it is sensible that
the IV coefficient is greater than the standard ordinary least squares (OLS). Moreover, as argued in
Ahlfeldt and McMillen (2018), this slope may provide a clue on the elasticity of substitution builders
face between land and capital in construction for providing floor space. The arc of expansion,
which lowers land values, may also provide an additional IV for estimating this parameter if proper
identification restrictions hold, which may be tested for using an overidentification test. Namely
a metro area’s arc of expansion should lower building heights by almost the same degree that
population raises them.

The body of the paper fleshes out the structural and econometric model described here, adding
a few flourishes. First, through urban agglomeration economies in production, income depends
on metro population endogenously. This makes land values rise more than proportionately with
population. Second, construction costs should rise with construction wages, which tied to local
income, and thus population. With data across cities, this is potentially important, as construction
costs vary widely. Third, land-use regulation imposed by local governments may lower building
heights relative to the height predicted by optimising behaviour. Indeed, this seems to explains
some of the variation in outliers in figures 1 and 3.

2Technically, this is Combes et al. (2012).
3Using The measure is slightly different than that measured by Albert (2010), which is the fraction of land over

water or with a slope greater than 15 percent within 50 kilometers. Ours is more focused on the city center.
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Figure 3: Central Land Values and Metropolitan Population

IV estimate from instrumenting central land values with population. Building heights are from roof to base, leaving
aside spires and antennas.

In all we build a recursive system of four econometric equations with three key estimated
parameters, and up to five testable restrictions based on the structural model. To extend the analysis,
we reconsider the relationship using Zipf’s Law for cities to instrument for metro population.

2 Data

To get overlapping data across all domains, we restrict the analysis to cover the cross section of
metropolitan areas in 2010. The data are organized into 262 metropolitan areas for which we have
data from all sources.

Metropolitan areas refer to 2010 consolidated metropolitan statistical areas (CMSAs). Pop-
ulation numbers and mean family income are taken from the Census and American Community
Survey.

Building heights for large cities are taken from skyscraperpage.com, for smaller cities we use
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data form emporis.com. For skyscraper height, we take the average height of the top ten tallest
buildings in each metropolitan area, although we consider alternative groupings. Since we do not
have land values across cities for more than a few years, as a control, we also collect the age of the
building.

Central land values reported in Albouy et al. (2018) refers to an area of 1 mile radius around
city hall. In large CMSAs with multiple centers, the maximum is used.

Wharton regulatory index is taken for the central city only, as opposed to the more common
index. While the response rate to this survey was well below 100 percent, the data on central cities
in our dataset is much more complete.

Construction costs are provided by R.S. Means and cover both materials and installation costs.

3 Structural Model

The structural model is a recursive system of four equations determining each metro area j′s
income, mj; construction costs, vj; central land values, rj; and building heights, Hj . We assume the
metropolitan population N j and arc of expansion Θj as exogenous. To follow the trail of causality
intuitively, we present this system in reverse order.

3.1 Monocentric City Structure

Cities expand from a central business district (CBD), where the skyscrapers are built. Due to data
limitations, we do not try to use land value variation within the CBD. Away from the CBD, land is
available for residential purposes along an effectively endless disc, which can expand only along
a fixed (exogenous) arc of expansion, Θj , which measured in radians may be as high as 2π for a
landlocked city; cities with their CBD on a linear coast have Θj = π (figure 4).

3.2 Determining Skyscraper Height

Skyscrapers are built in the central business district of a monocentric city. Builders there take the
price of central land, rj(0), and construction costs, vj as given. The builders’ optimisation process
lead to a relationship between rj(0), vj , and skyscrapers’ height given by:

d lnHj = σ∗ (d ln rj(0)− d ln vj + d lnBj) (1)
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Figure 4: Monocentric City

CBD
Θ

(water)

(land)

higher pop: N

The ∗ is to denote that this is not the true elasticity of substitution, but rather a transformation. This
number is altered by how the height relates to the land footprint—shape of the building, as well
as the use of capital—need of sophisticated components and design. Using data from Chicago,
Ahlfeldt and McMillen (2018) find that accounting for these increases the estimated elasticity of
substitution by roughly 30 percent. 4 Bj captures any differences in factor bias—favouring capital
over land—that might differ across cities.

3.3 Determining Central Land Values

The CBD abuts land, and may even include, land used for residential purposes. Residents consume
housing, and non-housing goods, according to Cobb-Douglas preferences, implying a fixed housing
expenditure share. They also pay commuting costs which increase with distance, z from the
CBD according to a (similar) power law. Land values fall with distance z from the CBD to
compensate households for commuting costs. Housing producers generate housing services from
land and construction inputs according to a Cobb-Douglas technology – at least as a “close enough”
approximation. This implies a cost share of land, and in turn a fixed derived share of household
expenditures spent on land. 5

4As shown in the appendix σ∗ = σ(1 + ζ − ξ)−1, where ζ is the elasticity of capital to floorspace, with respect to
building height, and ξ is the elasticity of the land relative to the footprint of the building.

5These are clearly approximations. Evidence from and imply that the elasticities are probably close enough to one
for this to be a workable approximation.
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The assumptions imply that central land values increase proportionally with population and
income, and decrease proportionally, with the arc of expansion and the commuting costs, captured
in F :6

d ln r(0) = d lnN + d lnm− d ln Θ− d lnF. (2)

Intuitively, this equation relies on the idea that land values are proportional to aggregate income
in a Cobb-Douglas economy—higher incomes raise the demand for land increasing prices as the
supply is fixed.Commuting acts as a quality of life disamenity. The multiplicative structure of the
commuting disutility keeps the share of land expenditure constant across the city, as residents face a
trade off between commuting and paying more for locations at the CBD.

3.4 Endogenous Construction Costs

The model also requires addressing local income and construction costs, which may be endogenous.7

If construction inputs consists of local labor costs in installation, while material costs are uniform,
then we expect the two to be related through a cost function

d ln v = ad lnm− d lnAv (3)

The parameter a is related closely to the cost share of land, while d lnAv captures any potential
productivity shifters in costs. 8

3.5 Endogenous Income

Urban economists have long studied urban agglomeration economies that cause incomes to rise.
The standard relationship between income and population is generally given by the power function

d lnm = γd lnN + d lnAm (4)

where γ is the agglomeration parameter and d lnAm account for productivity differences unac-
counted for by population.

Providing new ways of estimating γ is not the goal here. Rather, that if population and arc of

6The appendix shows that increases in the expenditure share on housing s, would also raise central land values
proportionally. An elasticity of substitution of less than one, would make this higher in more expensive cities, which
would then bias the coefficient on value raising characteristics, such as population, upwards.

7The appendix also covers the case where they are exogenous.
8Note Cobb-Douglas technology provides an exact first-order approximation in logarithms for any cost function.
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expansion may be taken as exogenous, a recursive system of equation follows. Population raises
income in equation (4), and through it construction costs in (3) by the elasticity aγ and land values
in (2) by the elasticity 1 + γ. Finally, the building heights equation (1) takes into account both of
these channels, producing an elasticity of σ∗(1 + γ − aγ . The chain for the arc of expansion is
simpler as it only affects land values, and through them building heights.

3.6 Incorporating Zipf’s Law to Instrument for Population

Finally, it is worth addressing the endogeneity of population.

d lnN j = d lnZj + ejZ (5)

where Zj is the inverse of the metro area’s rank in the population distribution. ejZ is an error term.
If we assume this is a relationship,

4 Econometric Model

The econometric model may be presented and tested through an unrestricted reduced form of four
equations. The two key exogenous variables provide eight parameters, which in the strictest version
may be explained by only three parameters. Following the standard Cowles notation BY = ΠZ+ε,
denote the rectangular system as

lnHj = πHN lnN j + πHΘ ln Θj +XjβH + εjH (6a)

ln r(0)j = πrN lnN j + πrΘ ln Θj +Xjβr + εjr (6b)

ln vj = πvN lnN j + πvΘ ln Θj +Xjβv + εjv (6c)

lnmj = πmN lnN j + πmΘ ln Θj +Xjβm + εjm (6d)

where Xj are control variables that include a constant. The model is overidentified as there are
eight free parameters and only three structural parameters. The reduced form parameters are

πHN = σ∗(1 + γ − aγ) πHΘ = −σ∗ (7a)

πrN = 1 + γ πrΘ = −1 (7b)

πvN = aγ πvΘ = 0 (7c)

πmN = γ πmΘ = 0 (7d)
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which reading upwards relays the recursive structure of the model.
The testable restrictions may be grouped according to their interest and importance in identifying

key relationship. Arguably two most interesting and demanding restrictions regard land values,
which should fall proportionally with the arc of expansion, πrΘ = −1 and rise by slightly more
due to the agglomeration parameter πrΘ = 1 + γ, which is typically small. Indeed these restrict
parameters to have an exact value, implying a strong degree of external validity, and not just that
the resemble each other.

The other key restriction is through the building heights relationship. It is non-linear and covers
three equations πHΘ = (1 + πmN − πvN)πHN . This is equivalent to stating that the elasticity
of substitution σ∗ is the same using the population instrument as the using the arc of expansion
instrument. This is resembles a standard Sargan over-identification test, except that it accounts for
endogenous income and construction cost shifts.

There are reasons why this overidentification test may fail to hold. One reason is that a limited
arc of expansion may change the demand for building height. Cities with a low arc of expansion
may have views that are more, or less desirable.9 If the goal is to have the building seen from far
away, a greater arc of expansion may provide more nearby viewers.

Less critical is the restrictions that the arc of expansion in construction costs and income
πvΘ = 0. It is possible that constrained cities suffer additional cost factors in construction. Thus,
we consider models that relax these last two restrictions. An addition, since a ≤ 1, we should have
that πvN < πmN

The arc of expansion may also be correlated with unaccounted for productivity boosters. This
restriction is not essential either way.

Finally, control variables may affect our outcomes, and so we focus on those that might affect
skyscraper height. Land-use restrictions would be expected to reduce building height if they create
a factor bias limiting capital’s productivity. Older buildings may also be shorter, reflecting more
expensive building technologies, not to mention a potentially dynamic mismatch due to their
durability. As buildings age and land appreciates, they may not reflect fully the value of the land
underneath them.

5 Results

The reduced form results are shown in Panel A of Table 1, without controls in columns (1) through
(4), corresponding in number to the order for the structural equations determining the outcomes.

9While views of nature may be in higher demand, it is contestable whether this is true of business operations.
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Controls for the Wharton index are added in the next four columns. The five tests for the restrictions
are shown in Panel B, starting with the single coefficient restrictions, and moving to the multiple
equation ones.

Starting with income determinants in columns (4) and (8), the estimated coefficient on population
is positive, significant and small. The estimated coefficient on the arc of expansion is not significantly
different from zero, as predicted.

For construction costs in (3) and (7), the coefficient on the population is less than the one for
income, as predicted. However the coefficient on the arc of expansion is negative, meaning that
construction costs are higher in more constrained cities, conditional on population.

The key land value equations in columns (2) show the relationship seen in Figure 2 augmented
with additional variables. Remarkably, the coefficient on the arc of expansion is very close to
minus one, as predicted. The coefficient on population is above one by an amount fairly close to
the population elasticity for income. The closeness of the estimates to these tight predictions is
remarkable.

The equation for building heights shows results that are precise for population, but less clear for
the arc of expansion. The cross equation restriction passes at a p-value of 5 or 10 percent without
controls, but not with them. This suggests that while the arc of expansion may be a good predictor
of land values, it may not be a good instrument for land values in the building heights equation, if
population is. Alternatively, the Sargan test suggests the two potential IVs have limited value.

The control variables do not appear to matter in the outcome predictions, except where they
were most expected, namely in affecting building height. Greater land-use restrictions and building
age both lower height, as expected.

Table 3 presents the structural estimates of the parameters using Generalized Method of Moments
(GMM). It presents estimates using two sets of restrictions. The columns with “Tight” restrictions
(1) and (3) uses all five restrictions, while the columns with “Loose” restrictions allow the arc of
expansion to impact construction costs and building heights.

The implied agglomeration parameter, γ is around 9 percent. This is slightly on the high
side relative to most recent estimates, but not implausible for this parameter. The labor share in
construction parameter a is in most specifications close to one half, which is not far from most
accounting procedures.

The elasticity of substitution in building height is near 0.35 in almost all of the specifications.
This is close to comparable estimates based on land-value variation in Chicago estimated by Ahlfeldt
and McMillen (2018). Taking their estimates to convert this into a true elasticity of substitution of
capital and land produces values slightly above 0.5.
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Table 3: Structural Estimation Results Using Population Rank

Controls No controls
Restrictions Tight Loose Tight Loose

(1) (2) (3) (4)

Population elasticity of income 0.091 0.090 0.085 0.086
γ = πmn (0.007) (0.008) (0.005) (0.006)

Const. cost share of labor 0.702 0.659 0.572 0.481
a = πvn/πmn (0.082) (0.118) (0.108) (0.107)

Elasticity of substitution on bldg hgt 0.342 0.361 0.339 0.343
σ = πhn/(1 + πmn − πvn) (0.017) (0.033) (0.022) (0.026)

Arc of expansion on height 0.202 0.044
(0.138) (0.161)

Arc of expansion on const. cost -0.089 -0.095
(0.042) (0.043)

Overidentification test 0.145 0.988 0.063 0.366

In the tight model, all constraints hold (πrΘ = −1, πvΘ = 0, πmΘ = 1, πrN = 1 + πmN , and πhN = −πhΘ ∗ (1 +
πmN − πvN )).

6 Conclusion

We demonstrate that tight the relationship between skyscraper height and land values is explained
through land values by marrying two canonical models. The first is a monocentric city model that
predicts that central land values increase proportionally with aggregate income, reflecting potential
savings in commuting costs. We test a particular variant that restricts the relationship to be one to
one. Furthermore, we test the prediction that central land values fall proportionally with a city’s arc
of expansion, namely the degree to which geography allows metro areas to expand radially from the
center in all directions. Remarkably, the data appear consistent with the model’s exact one-to-one
predictions despite its radical simplicity.

The second model relates land values to building heights through a production relationship. The
magnitude of this relationship is determined by the elasticity of substitution between land and capital
in production. This parameter is unconstrained, although the data produce an estimate consistent
with the literature. More interestingly, the two models combined justify a testable instrumental
variable model. If the exclusion restrictions hold, a metro area’s arc of expansion should lower
building heights to the same degree that aggregate income raises them. In other words, skyscrapers
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are taller in places where geography makes it hard for cities to sprawl, and this operates through
higher land values. While this prediction proves to be less than perfect, overall the model does well
in light of a battery of tests, and performs well with controls.

Furthermore, the model provides a tractable and plausible system of equation’s that tracks
several important economic urban economic phenomena together. It highlights visible features of
cities, taking together several complex phenomena, including urban agglomeration economies in a
transparent framework. Thus, we hope it provides a good starting point for teaching and learning as
well as future research.

Appendix

6.1 Economic Model

6.1.1 Land Value Determination

Based on mobility within city, the equilibrium price of housing at distance z from the center falls in
proportion to the increase in commuting costs, f(z)

p(z) = p(0)

[
f(0)

f(z)

] 1
s

Housing prices relate to land price via the following unit cost function, where φ is the cost share of
land in housing:

p(z) =
[r(z)]φ v1−φ

AY φφ(1− φ)1−φ

Housing demand is

N(z)y(z) = N(z)s
m

p(z)
= N(z)

sm

p(0)

[
f(z)

f(0)

] 1
s

= N(z)
smAY φ

φ(1− φ)1−φ

[r(0)]φ v1−φ

[
f(z)

f(0)

] 1
s

Note that the price gradient does not depend heavily on the assumption of constant income and cost
shares: they are valid first-order approximations. The demand and supply quantities depend on the
elasticity of substitution even in a first-order approximation, making them much more dependent on
the Cobb-Douglas assumption.
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Land values are determined by the derived demand for housing

r(z) = [p(z)AY ]
1
φ φ

(
1− φ
v

) 1−φ
φ

= [p(0)AY ]
1
φ φ

(
1− φ
v

) 1−φ
φ

︸ ︷︷ ︸
r(0)

[
f(z)

f(0)

]− 1
sφ

Housing supply at distance z

Y (z) = zΘAY

[
r(z)

v

]1−φ(
1− φ
φ

)1−φ

= zΘAY

[
r(0)

v

]1−φ(
1− φ
φ

)1−φ [
f(z)

f(0)

]− 1−φ
sφ

Taking the ratio of supply to demand to solve for the population at distance z

N(z) =
Y (z)

y(z)
= r(0)

Θz

smφ

[
f(z)

f(0)

]− 1
sφ

The population at any distance is proportional to the central land value

N =

∫ ∞
0

N(z)dz = r(0)
Θ

smφ

∫ ∞
0

[
f(z)

f(0)

]− 1
sφ

zdz︸ ︷︷ ︸
≡F

Remarkably the commuting cost function may be taken out if commuting cost structures are similar
across cities.10 Solving for r(0) and taking the differential provides the following cost-based
equation

d ln r(0) = d lnN − d ln Θ + d lnm+ d ln s− d lnF (8)

6.1.2 Building Heights

Neither building height function nor floorspace is equivalent to capital. Rather, assume that capital
investment rises proportionally with floor space F , but increases with building height as governed
by the elasticity ζ

d lnK = d lnF + ζd lnH (9)

A building has a certain footprint T , however the land required may rise with height, possibly from
zoning codes

d lnL = d lnT + ξd lnH = d lnF + (ξ − 1)d lnH (10)

10If there is an outside option
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where the second equation uses the identity that height is merely floorspace divided by the footprint,
H = F/T → T = F/H Thus we have that floorspace drops out capital to land ratio is

d lnK − d lnL = (1 + ζ − ξ)d lnH

We assume that skyscrapers compete for land with central residences. Unlike the latter, allow
building of skyscrapers to follow a more flexible technology, with the elasticity of substitution
between capital and land given by σ

d lnK − d lnL = σ(d ln r(0)− d ln v + d lnB) (11)

and d lnB captures any differences due to factor bias. ln v is a construction cost index.
We then have

d lnH =
σ

1 + ζ − ξ︸ ︷︷ ︸
σ∗

(d ln r(0)− d ln v + d lnB) (12)

We lack the data to estimate beyond σ∗.
Substituting in the land value equation, provides a benchmark for how population raises and the

arc of expansion lowers building heights.

d lnH = σ∗(d lnN − d ln Θ + d lnm− d ln v + d lnB + d ln s− d lnF ) (13)

One difficulty is that incomes and construction costs are likely collinear due to similarities in pay
differentials. To a lesser extent, population and income may also be collinear due to agglomeration
economies.

Endogenous income
lnm = γ lnN + lnAm (14)

Endogenous construction cost

ln v = a lnm+ lnAv

= γa lnN + a lnAm + lnAv
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6.2 Econometric Model

6.2.1 Structural Model - Endogenous Income and Construction Costs

The structural equations BY + ΓZ = U may be given as (check)
1 −σ∗ σ∗ 0

0 1 0 −1

0 0 1 −a
0 0 0 1




lnH

ln r(0)

ln v

lnm

+


0 0

−1 1

0 0

−γ 0


[

lnN

ln Θ

]
=


d lnB

ln s+ d lnF

d lnAv

d lnAm


Some of the controls may be used to absorb the residual.

6.2.2 Reduced Form

Y = ΠZ + V, where Π = −B−1Γ, which means that the reduced form coefficient matrix is
πHN πHΘ

πrN πrΘ

πvN πvΘ

πmN πmΘ

 =


−1 −σ∗ σ∗ −(1− a)σ∗

0 −1 0 −1

0 0 −1 −a
0 0 0 −1




0 0

−1 1

0 0

−γ 0

 =


(1 + γ − aγ)σ∗ −σ∗

1 + γ −1

aγ 0

γ 0


So we have 5 restrictions and 3 free parameters. The five restrictions may be grouped. First the zero
restrictions.

πmΘ = 0 (15a)

πvΘ = 0 (15b)

Then for land we need the two, the latter slightly augmented from before (but the right is close to
zero:

πrΘ = −1 (15c)

πrN + πrΘ = πmN (15d)

In the building heights there is one non-linear restriction, which lets the

πHN = −(1 + πmn − πvN)πHΘ (15e)
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which is close to πHN = −πHΘ Some restrictions may be imposed.
The structural parameter estimates are

γ = πmN (16a)

a =
πvN
πmN

(16b)

σ∗ = −πHΘ =
πHN

1 + πmN − πvN
(16c)

(16d)

Note imposing γ = 0, which is not too far from reality, creates the simpler model we did before.

6.2.3 Structural Model - Endogenous Income and Construction Costs

The structural equations BY + ΓZ = U may be given as (check)

[
1 −σ∗

0 1

][
lnH

ln r(0)

]
+

[
0 0 0 σ∗

−1 1 −1 0

]
lnN

ln Θ

lnm

ln v

 =

[
ln s d lnF 0

0 0 d lnB

]

Some of the controls may be used to absorb the residual.

6.2.4 Reduced Form - Exogenous Income and Construction Costs

Y = ΠZ + V, where Π = −B−1Γ, which means that the reduced form coefficient matrix is[
πHN πHΘ πHm πHv

πrN πrΘ πrm πrv

]
=

[
−1 −σ∗

0 −1

][
0 0 0 σ∗

−1 1 −1 0

]
=

[
σ∗ −σ∗ σ∗ −σ∗

1 −1 1 0

]

The restrictions may be grouped. In the land equation, we can test two equality of coefficients, and
then the restriction of unity:

πrN = −πrΘ (17a)

πrN = πrm (17b)

πrN = 1 (17c)
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For construction costs we have

πrv = 0 (17d)

although measurement problems may make us want to impose this. One possibility is that higher
construction costs are associated with worse infrastructure/greater commuting costs.

In the building heights

πHN = −πHΘ (18a)

πHN = πHm (18b)

πHN = −πHv (18c)

So we have 7 restrictions and 1 free parameterm σ∗. Some restrictions may be imposed.

6.2.5 Collinearity of constructions costs

If lnm = ln v

[
1 −σ∗

0 1

][
lnH

ln r(0)

]
+

[
0 0 σ∗

−1 1 −1

] lnN

ln Θ

lnm

 =

[
ln s d lnF 0

0 0 d lnB

]

The reduced form coefficient matrix is[
πHN πHΘ πHm

πrN πrΘ πrm

]
=

[
−1 −σ∗

0 −1

][
0 0 σ∗

−1 1 −1

]
=

[
σ∗ −σ∗ 0

1 −1 1

]

The restrictions are fewer now as they exclude thew zero in the land equation

πrN = −πrΘ (19a)

πrN = πrm (19b)

πrN = 1 (19c)
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In the building heights, there are only two

πHN = −πHΘ (20a)

πHN = πHm (20b)

In this model there are 5 restrictions and 1 free parameter, σ∗. Some restrictions may still be
imposed.

6.2.6 Population and Income Imposed the Same

If lnN + lnm is our variable for whatever justification

[
1 −σ∗

0 1

][
lnH

ln r(0)

]
+

[
0 0 σ∗

−1 1 0

] lnN + lnm

ln Θ

ln v

 =

[
ln s d lnF 0

0 0 d lnB

]

The reduced form coefficient matrix is[
πHN πHΘ πHv

πrN πrΘ πrv

]
=

[
−1 −σ∗

0 −1

][
0 0 σ∗

−1 1 0

]
=

[
σ∗ −σ∗ −σ∗

1 −1 0

]

Three restrictions for land

πrN = −πrΘ (21a)

πrN = 1 (21b)

πrv = 0 (21c)

In the building heights, there are two

πHN = −πHΘ (22a)

πHN = −πHv (22b)

In this model there are 5 restrictions and 1 free parameter, σ∗. Some restrictions may still be
imposed.
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6.2.7 Population and Income Imposed the Same and No Construction Costs

If there is no meaningful difference in construction costs, just eliminate the last two.

6.2.8 Endogenizing population

Rosen-Roback model, no taxes. Amenities and income provide willingness-to-pay at center.

lnQ+ lnm = s ln p(0) (23)

= s(φ ln r(0) + (1− φ) ln v − lnAY ) (24)

Or in terms of income, another determinig equation.

lnm = sφ ln r(0) + s(1− φ) ln v − lnQ− s lnAY (25)

This provides the essential structural equation. We could probably go from here. Note this would
bring in two more potentially free parameters, s and φ. In a sense, and βmv = s(1− φ)βmr = sφ,
so that

s = βmr + βmv (26)

φ =
βmr

βmr + βmv
(27)

Substituting in all our expressions

lnQ+ (γ lnN + γAm) = s(φ(lnN − ln Θ + γ lnN + γAm + ln s− lnF ) (28)

+ (1− φ)(γa lnN + a lnAm − lnAv)− lnAY ) (29)

Rearranging gives the essence of the structure in reduced form equation

[sφ(1 + γ)− γ + s(1− φ)γa] lnN = lnQ+ sφ ln Θ (30)

+ [1− sφ− s(1− φ)a]γ lnAm (31)

+ AY + (1− φ)s lnAv − sφ(ln s+ lnF ) (32)

Instruments should be amenities and the arc of expansion. We need excludable amenities that are
unrelated to productivity in housing or tradeable labor.
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Zipf’s law (Table 2). Zipf’s law implies that

lnNj = a− ln(rank(Nj))

where rank() returns a rank of input variable. If the population follows Zipf’s law perfectly, then
what it implies in our context is that the strength (or, quality) of the log population as the instrument
for the central land value is exactly the same as those based on the log rank population.

In our data set, Zipf’s law holds for the population. Therefore, our empirical results should go
through with the log rank population if it is used as an instrument. Results are quite similar to those
based on the log population as it should be.

On imposing Zipf’s law. Our structural model with Zipf’s law.
The econometric model may be presented and tested through an unrestricted reduced form of

four equations. The two key exogenous variables provide eight parameters, which in the strictest
version may be explained by only three parameters. Following the standard Cowles notation
BY = ΠZ + ε, denote the rectangular system as

lnHj = πHN lnN j + πHΘ ln Θj +XjβH + εjN (33a)

ln r(0)j = πrN lnN j + πrΘ ln Θj +Xjβr + εjr (33b)

ln vj = πvN lnN j + πvΘ ln Θj +Xjβv + εjv (33c)

lnmj = πmN lnN j + πmΘ ln Θj +Xjβm + εjm (33d)

lnNj = πNZ ln rank(Nj) + εjN (33e)

where Xj are control variables that include a constant. The model is overidentified as there are
eight free parameters and only three structural parameters. The reduced form parameters are

πHN = σ∗(1 + γ − aγ) πHΘ = −σ∗ (34a)

πrN = 1 + γ πrΘ = −1 (34b)

πvN = aγ πvΘ = 0 (34c)

πmN = γ πmΘ = 0 (34d)

which reading upwards relays the recursive structure of the model.
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7 Data

7.1 Building heights

We use data on building heights from skyscraperpage.com. An important part of our approach is
having a measure of height consistent with the floor area, that is why we measure heights from
the ground to the roof, leaving aside ornamental features as spires and antennas. For part of the
sample our source only provided the floor count but not height in feet. For those building we uses
the predicted height bases on the floor count. Figure (5) shows the relation between height and the
number of floors, our estimate is that the average height of a floor is 11.4 feet.

Table 4: Summary Statistics

Mean Std.Dev. Obs
Height top 10 buildings 217.17 168.77 262
Land values 1.78 8.56 262
Population (millions) 0.83 2.08 262
Arc of expansion (percentage) 0.91 0.19 262
Age top 10 high-rises by 2020 52.41 21.02 261
Construction cost 89.70 9.75 262
Household income 59504.70 9091.29 262
Wharton city index -0.25 0.90 223
Observations 262

7.2 Arc of Expansion

Data on the arc of expansion from Malpezzi (????) was complemented with our own calculations
using Google maps. The method is simple, for cities that have shores with a large bodies of water
(oceans or Great Lakes), we draw a circle with a radius no greater than 50 miles. Drawing a triangle
as described in Figure (6), we calculate the degrees of expansion lost to the body of water.
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Figure 5: Building Height and the Number of Floors

Figure 6: Measure Arc of Expansion
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